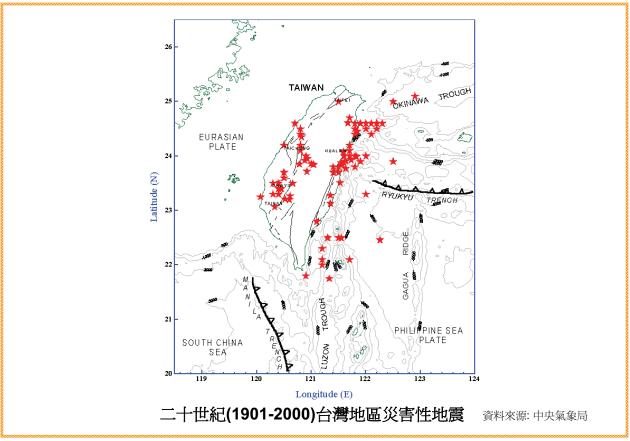


公路橋梁耐震評估與補強技術之 發展與演進

台灣大學土木系 張國鎮 教授 99年5月12日

National Center for Research on Earthquake Engineering

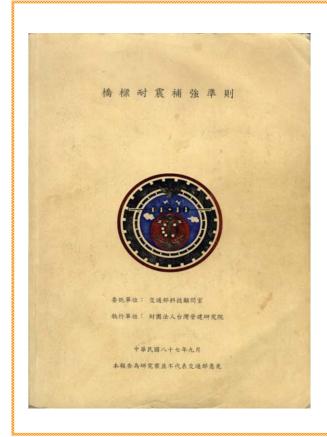

簡報大綱

- 地震災害回顧
- 既有補強準則與橋柱補強研究
- 耐震補強採用標準
- 耐震補強策略
- 美日耐震補強手冊
- 最新耐震評估及補強準則

National Center for Research on Earthquake Engineering

National Center for Research on Earthquake Engineering. "Reconnaissance report of the 921 Chi-Chi Earthquake for bridges and transportation facilities." Report No. NCREE -99-055, Taipei, Taiwan, November, 1999.

National Center for Research on Earthquake Engineering



- 1: pot rubber bearing slipped on the seat, totally failure
- 2: rubber bearing offset
- 3: Shear keys of Miao-zi-ping bridge were severely damaged during the earthquake

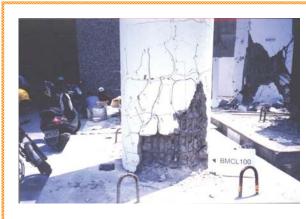
民國87年交通部科顧室「耐震補強準則」

- 探討台灣地區設計地震
- 提供耐震評估方法
 - 建議橋柱補強設計公式 國科會「RC橋柱耐震補強 對策之研究與應用」整合 型計劃(88-91年)
- 耐震補強設計範例

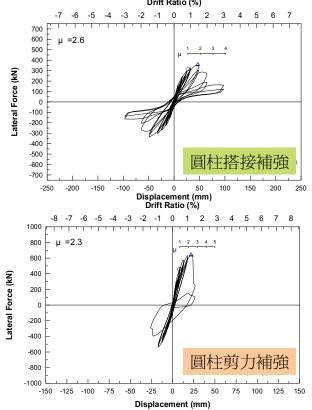
National Center for Research on Earthquake Engineering

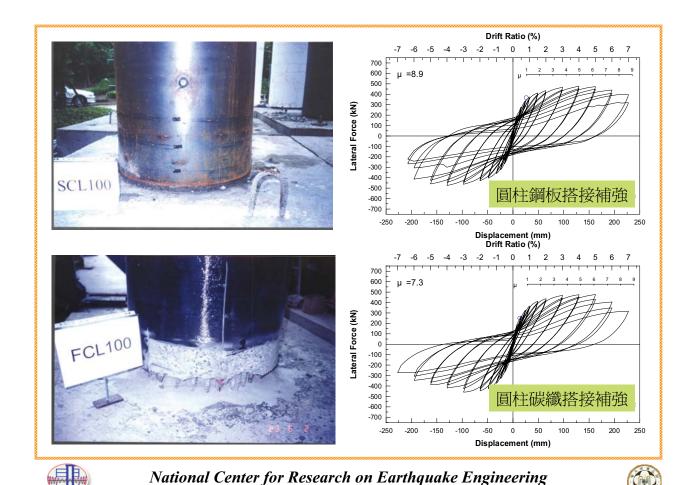
圓形橋柱實驗試體表

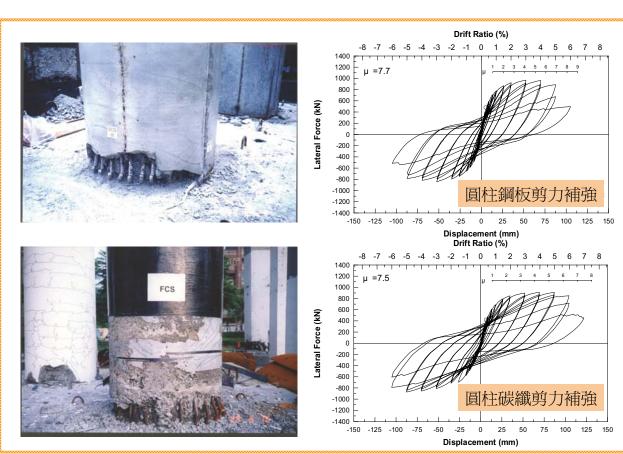
		補強 方式	彎	彎矩破壞		剪力破壞		搭接破壞	
	李有豐	碳纖	標準試體	BMCF1 BMCF2 CF1 CF2 CF4	標準試體	BMCS	標準試體	BMCL100	
圓柱	, ,, =	CFRP	補強試體	SCF2 SCF3 FCF2 FCF3	補強試體	SCS FCS FCS-1 FCS-2	補強試體	SCL100 FCL100 FCL100-1 FCL100-2	
	4 - 5 m	鋼板	標準試體	BMC2 SC1	標準試體	BMCS	標準試體	BMCL100	
	黄震興	Steel	補強試體	SC2 SC3	補強試體	SCS	補強試體	SMCL100	



矩形橋柱實驗試體表


		補強 方式	彎矩破壞		剪力破壞		搭接破壞	
	張國鎮	碳纖	標準試體	BMR1 BMR2 BMR3 BMR4	標準試體	BMRS	標準試體	BMRL50 BMRL100
矩	wa.x	CFRP	補強試體	FR1 FR2 FR3	補強試體	FRS	補強試體	FRL100 SFRL100
柱		۸ ا ا ا	標準試體	BMR3	標準試體	BMRS	標準試體	BMRL100
	蔡克銓	鋼板 Steel	補強試體	SR1 SR2 SR3 SR4	補強試體	SRS1 SRS2	補強試體	SRL1 SRL2





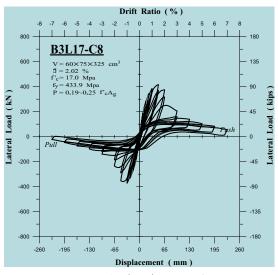


図 效果不彰工法:碳纖補強

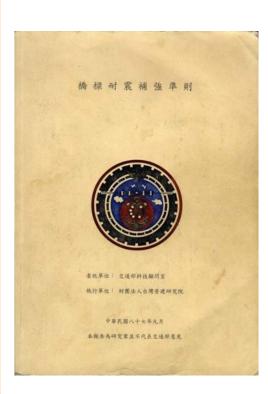
國內研究: 國家地震工程研究中心

水平力與變位反應

基礎延伸而出之 主筋並無挫曲現象。

National Center for Research on Earthquake Engineering

Short Rec. Column- Lap Splice Failure-CS Method


Section: 50 * 80 Height: 200 L16S3-CS10

Compared to the co

Hysteresis Loops of L16S1-CS10

■民國87年:

交通部科顧室「耐震補強準則」

■民國93年:

交通部台灣區國道高速公路局「國道高速公路橋梁耐震分析評估及補強工程」

■民國94年

交通部台灣區國道高速公路局「國道 二號高速公路拓寬工程規劃及設計橋 梁耐震補強評估及補強設計準則」

■民國97年

交通部公路總局「公路橋梁耐震能力評估及補強工程可行性研究」

National Center for Research on Earthquake Engineering

國內橋梁耐震補強採用標準演進

- 民國85年「電信與運輸系統之耐震安全評估與 補強準則」
- (1)現有橋梁型式依據地震危害度推估尚可使用年限為T 年,則其耐震能力足夠與否的標準係以T年內超越機率 10%之地震地表加速度為準對應的回歸期Tr

$$T_r = \frac{1}{1 - 0.9^{\frac{1}{T}}}$$

(2)回歸期Tr對應之地表加速度值 agr ,即為現行耐震規範中475年回歸期之工址水平地表加速度Z(g)

$$\frac{a_{gr}}{a_g} = (\frac{T_r}{475})^k$$
 Ag = 0.4S_{DS} k=0.3~0.475

■ 國道高速公路橋梁耐震補強

(1)民國89年第一期工程 - 國道高速公路(通車路段) 橋梁耐震補強工程[國道一號中山高速公路之橋 梁耐震補強

橋梁補強後以新橋之設計標準再服務年限50年為原則,並考慮重要性係數I=1.2,依據民國89年4月7日交通部函頒之「公路橋梁耐震設計規範」修正條文指示,將臺灣地震分區改為二區(地震甲區及地震乙區),震區水平加速度係數Z分別為0.33g及0.23g。

National Center for Research on Earthquake Engineering

(2)民國93年第二期工程 - 國道二號高速公路橋梁 耐震補強,橋梁補強後以新橋之設計標準再服 務年限50年為原則,並考慮重要性係數I=1.2, 其橋梁耐震補強之性能目標,如下表所示。

地震力等級	耐震理念	50 年 超越機率	回歸期	服務性能	損壞等級
中度地震	結構保持 彈性	80%	30 年	震後 正常通行	輕微
設計地震	構件產生塑 鉸,發揮容許 韌性容量	10%	475 年	震後 有限通行	可修復
最大考量 地震	結構韌性容量 完全發揮,但 橋梁不會落 橋、崩塌	2%	2500 年	震後有限通行	嚴重

■ 民國97年交通部「公路橋梁耐震能力評估及補 強工程可行性研究」

以橋梁設計規範或橋齡來釐訂不同預期使用剩餘年限超越機率10%之PGA作為補強之標準

			補強標準(超越機率10%之PGA)		
設計使用規範	橋齢	預期使用年限 	耐震規範 ZI 甲區0.396	耐震規範 ZI 乙區0.276	
49年或更久	40年以上	20年	0.282	0.196	
76年以前規範	25~40年	30年	0.327	0.228	
76年規範	10~25年	40年	0.364	0.254	
84年規範之後	10年以下	50年	0.396	0.276	

National Center for Research on Earthquake Engineering

國內橋梁耐震能力初步評估方法

- 民國85年交通部『電信與運輸系統之耐震安全 評估與補強準則」
 - (1)落橋評估表
 - (2)強度韌性評估表
 - (3)穩定性評估表
- 民國92年交通部公路總局的研究報告『橋梁耐 震能力評估準則之建立』
 - (1)落橋評估表
 - (2)強度韌性評估表〔甲、乙表〕

■ 民國97年交通部公路總局「公路橋梁耐震能力評 估及補強工程可行性研究」

公路橋梁耐震評估檢查表—落橋評估(一般橋梁) 公路橋梁耐震評估檢查表—強度韌性評估(一般橋梁) 公路橋梁耐震評估檢查表—強度韌性評估(單跨橋梁) 公路拱橋耐震評估檢查表—落橋評估表 公路拱橋耐震評估檢查表—強度韌性評估 公路吊橋耐震評估檢查表—強度韌性評估

評估類別版本	3	落橋評估		強力	度、韌性評	估
評估項目	85年版	92年版	95年版	85年版	92年版	95年版
建造年代	2%	0%	0%	4%	0%	0%
工址環境	27%	31%	25%	24%	32%	25%
結構系統	31%	29%	30%	56%	52%	30%
結構細部	40%	40%	45%	16%	16%	45%

- 一般橋評估細項則與92年版約75%相同,於配分權重因項目 及重要性之認知而有差異。
- 1.工址環境增列橋梁是否位於第一類活動斷層近域。
- 2.結構細部加入支承狀況評估,分一般橋柱與壁式橋墩兩種。
- 3.液化可能性之評估可參考全台行政區為劃分單位之液化潛能分 區表。

表 3 公路橋梁耐震評估檢查表—落橋評估(一般橋梁)

橋梁名稱: 橋梁編號: 振動單位:P ~P 評估者: 評估日期: 建造年度: 口民國 49 年前 □民國 49 年~76 年 口民國 76 年~84 年 □民國 84年~89年 口民國 89 年以後 項目 權重 評分 8 0是(1.0)0否(0) G101 橋 是否為第一類活動斷層近域 G102 址 地盤類別 4 口台北盆地(1.0)口軟弱地盤(0.67)口普通地盤(0.33)口堅實地盤(0) G103 環 相鄰橋墩間地表土質變化 2 口大(1.0)口中(0.67)口小(0.33)口無(0) G104 境 液化可能性 6 口高(1.0)口中(0.67)口低(0.33))口無(0) 相鄰兩振動單位結構系統差異性 G105 8 口大(1.0)口中(0.67)口小(0.33)口無(0) G106 結 外懸鉸接 2 口有(1.0)口無(0) G107 構 | 梁端橋墩或橋台之斜角 8° 4 $w = \theta^{\circ}/90^{\circ} \le 1.0$ G108 系 縦坡坡度 5(%) $w = S/6\% \le 1.0$ G109 | 統 | 曲線橋(半徑≤100m或交角≥30°) 4 $|w_1 = 100/r \le 1.0$; $w_2 = \alpha/30 \le 1.0$; $w = \max(w_1, w_2)$; r: 半徑; α : 交角 G110 基礎裸露程度 20 椿基礎: w = 2.0 - 2.0(h_{ieft} /h) ; 沉箱基礎: w = 1.43 - 1.43(h_{ieft} /h) 支承狀況 4 口極差(1.0)口不良(0.67)口尚可(0.33)口良好(0) $w = \frac{N-N_e}{N/2} \le 1.0$,當 $N-N_e \ge 0$;w = 0,當 $N_e \ge N$; N_e :實際有效防落長度 G112 結 防落長度 構 N:84年規範規定之防落長度; N=50+0.25L+1.0H 細 口兩向均無裝設(1.0)口僅垂直行車向裝設(0.5)口僅行車向裝設(0.25)口兩向均有裝設(0) G113 部 防落設施 12 註:(1)防落設施功能不良者,權重再加 0.25。 (2)當N_e≥1.2N,行車向視為其有防落設施,且功能良好。 G114 其他異常現象 橋柱垂直度、支承座至帽梁邊緣混凝土之異常狀況等

註:(1)實際防落長度如大於規範規定防落長度,橋址環境各項之評分可乘以折滅係數 $\phi=1-0.8[(N_e/N)-1]\geq0.6$ 。 (2)評估內容中 w 為計算之權重。(3)評分愈高者表 安全愈有疑慮。

分數總計

National Center for Research on Earthquake Engineering

表4 公路橋梁耐震評估檢查表—強度韌性評估(一般橋梁)

橋梁名	稱	:	橋梁編號:		里程數: 振動單位: 評估者: 評估日期:				
建造年	度	:	□民國 49 年	以前	以前 □民國 49 年~76 年 □民國 76 年~84 年 □民國 84 年~89 年 □民國 89 年以				
項次	_		項目	配分	評 估 內 容	權重	評分		
CALUL	橋	是否	為第一類活動斷層近域	8	□是(1.0) □否(0)				
G202	址環	地盤	類別	6	□台北盆地(1.0) □軟弱地盤(0.67) □普通地盤(0.33) □堅實地盤(0) □76 年以後設計(0)				
G203	境	液化	可能性	6	□高(1.0) □中(0.67) □低(0.33) □無(0) □84 年以後設計(0)				
G204	結	梁端	橋墩或橋台之斜角 θ°	4	$w = \theta^{\circ} / 90^{\circ} \le 1.0$				
G205	構	橋柱	或壁式橋墩高寬比 R	6	當 R ≤ 2.5、w = 1.0;當 2.5 < R < 5、w = (5 − R) / 2.5;當 R ≥ 5, w = 0 (取兩向評估之大值)				
G206	系	振動	單位中橋柱、墩最高與最低之比	4	當 $r \ge 1.5$, $w = 1.0$; 當 $1.0 \le r < 1.5$, $w = -2 + 2r$				
G207	稅	橋柱	或壁式橋墩靜不定度	6	□兩向均靜定(1.0) □一向具靜不定(0.5) □兩向均靜不定(0)				
G208		基礎	裸露程度	24	椿基礎: $w = 2.0 - 2.0(h_{left}/h)$; 沉箱基礎: $w = 1.43 - 1.43(h_{left}/h)$				
G209		_	柱底搭接與否	8	有搭接(1.0) □無搭接(0)				
G210		般	塑鉸區箍筋細部	8	下符合耐震規定(1.0) 口部分符合耐震規定 (0.5) 口符合耐震規定(0)				
G211		橋	主筋斷點與箍筋細部	4	□有斷點且箍筋較柱底少(1.0) □有斷點但箍筋不少於柱底(0.5) □無斷點(0)				
G212	結	柱	橋柱與基礎劣化程度	8	□嚴重 (1.0) □差(0.67) □尚可(0.33) □微(0)				
G209		壁	壁式橋墩底部鋼筋搭接與否	6	□有搭接(1.0) □無搭接(0)				
G210	構	式	縱、橫向鋼筋比與細部	8	□不符合耐震規定(1.0) □部分符合耐震規定(0.5) □符合耐震規定(0)				
G211		橋	主筋斷點與箍筋細部	6	□有斷點且箍筋較墩底少(1.0) □有斷點但箍筋不少於墩底(0.5) □無斷點(0)				
G212	細	墩	橋墩與基礎劣化程度	8	□嚴重 (1.0) □差(0.67) □尚可(0.33) □微(0)				
G209	語	錮	橋柱板之寬厚比	8	矩形柱 $\Box_t^b \frac{43}{\ell_F^3}(0)$; $\Box_{\sqrt{F_g}}^{63} \leq \frac{b}{\ell_F}(\frac{43}{\sqrt{F_g}}(0.5)$; $\Box_t^b \geq \frac{63}{F_g}(1.0)$; 圖形柱 $\Box_t^b \frac{12}{\ell_F^3}(0)$; $\Box_{F_g}^{145} \leq \frac{D}{\ell_F}(\frac{232}{F_g}(0.5)$; $\Box_t^b \geq \frac{232}{F_g}(1.0)$				
G210		橋	縱向加勁板寬厚比	3	$\frac{b}{t} \geq \frac{63}{\sqrt{F_s}} (1.0) : \Box \frac{b}{t} \langle \frac{16}{\sqrt{F_s}} (0) : \text{unit} : \text{tf-cm}^2$				
G211		柱	人孔位置	3	〕內灌混凝土高/人孔位置高≥0.4(1.0); □內灌混凝土高/人孔位置高<0.4				
G212			橋柱銲接細部	6	□全滲透銲(0); □半滲透銲(1.0)				
G213		支承狀況與其他異常現象 8 支承強度與損壞狀況、橋柱垂直度、跨度差異大、曲線橋、橋柱型式不同、銲接品質不良等							
分數線	總計			100					

■ 推估初評表分數

輸入: 橋梁型式X1, 橋齡X2

輸出: 韌性評分Y1

$$Y = 37.397 \left(X_{1}^{*} \right)^{0.290} + 216.640 \left(X_{2} \right)^{0.063} + 23.234 \left(X_{1}^{*} \times X_{2} \right)^{-191.411}$$

■ 由初步評估推估詳細評估崩塌地表加速度

輸入: 橋梁型式X1, 橋齡X2, 設計使用年限X3

輸出: 崩塌地表加速度Y

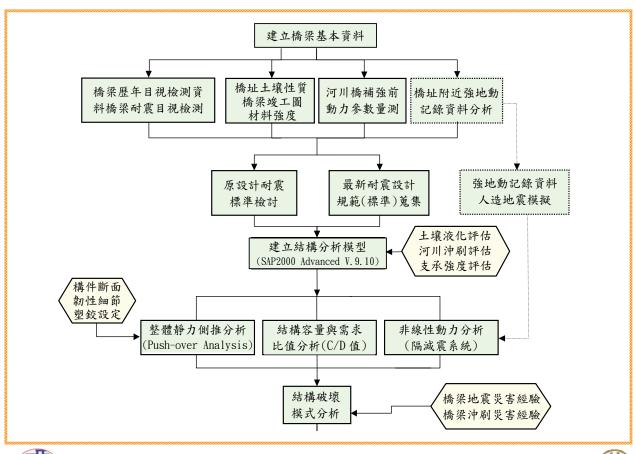
$$Y = \left(0.187 \left(\frac{X_1}{100}\right)^{-0.236} + 0.631 \left(\frac{X_2^*}{15}\right)^{6.742}\right) (X_3)^{0.337}$$

National Center for Research on Earthquake Engineering

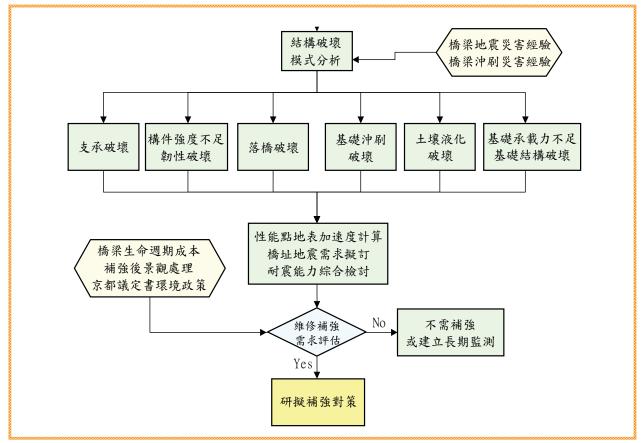
國內橋梁耐震能力詳細評估方法

- 民國85年「電信與運輸系統之耐震安全評估與 補強準則」
 - 0.1g評估法
- 民國89年「國道中山高速公路橋梁耐震分析評 估及補強設計原則」
 - 0.1g評估法

容量和需求比值法(C/D比值法)



- 民國93年「國道高速公路橋梁耐震分析評估及 補強設計原則(草案)」
 - 橋梁側推分析法(Pushover Analysis)
 - 容量和需求比值法(C/D比值法)
- 民國97年「省道公路橋梁耐震能力評估及補強 工程可行性研究」
 - 單跨橋:採構件檢核及穩定性之檢核
 - 多跨一般性橋梁:採橋梁側推分析法(Pushover Analysis)
 - 特殊橋梁:依結構之複雜性,採橋梁側推分析法、線性動力歷時分析或非線性動力歷時分析



National Center for Research on Earthquake Engineering

國內橋梁耐震補強策略

■ 民國89年 「國道第一期工程-國道一號中山高速公路之 橋梁耐震補強」

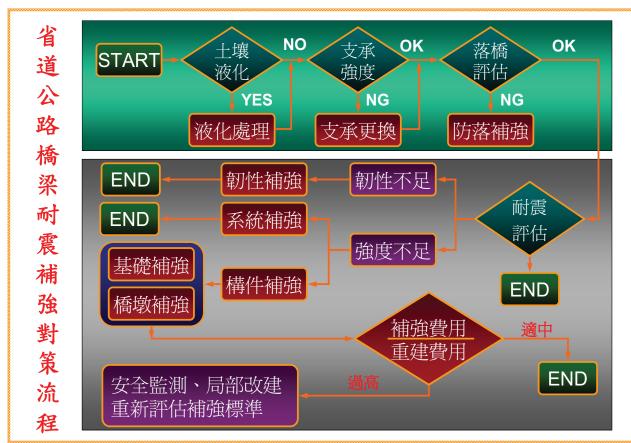
依耐震能力評估結果進行各構件韌性需求與強度需求之補強,主要區分為下列四部份:

- (1)橋柱強度與韌性
- (2)防止落橋裝置
- (3)基礎強度與穩定性
- (4)土壤液化抵抗能力

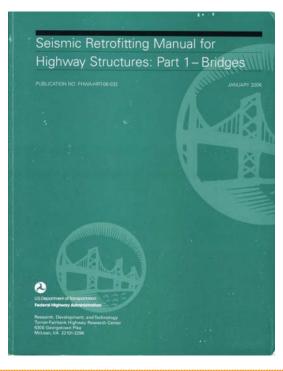
由於在進行基礎強度與穩定性之評估檢核時, 以往橋梁基礎之設計並未考量以橋柱產生塑鉸 之力量,其基礎強度可能不足而需要予以補 強,因此

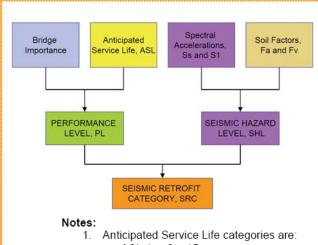
中山高南部路段橋梁基礎補強費用相當高

- 民國93年「國道第二期工程-國道二號高速公路 之橋梁耐震補強」
- (1) 橋梁整體結構系統耐震能力均衡提昇
- (2) 原則上將藉由橋柱補強增進橋梁之強度韌性
- (3) 增設耐衝擊的防止落橋裝置
- (4) 採用反力分散增加阻尼或週期延長降低地震力
- (5) 短跨橋梁宜考量橋台動力反應與土壤阻尼效應
- (6) 單跨橋橋台不作構件補強

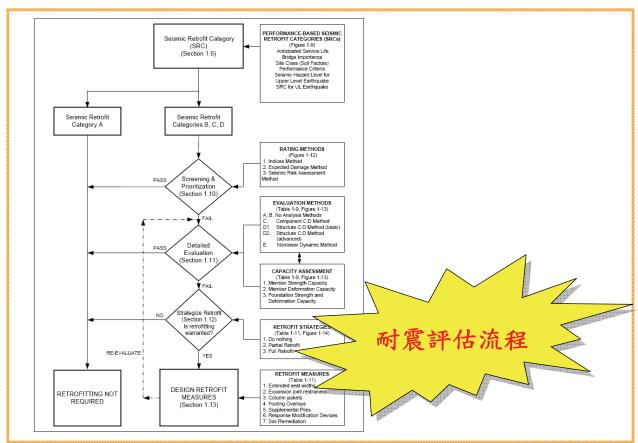


- 民國97年「公路橋梁耐震能力評估及補強工程 可行性研究」補強策略
- (1)-(6) 項與前計畫相同
- (7)若橋梁無特別之高液化及沖刷基礎裸露等問題,在如市區高架橋、陸橋等,應儘量避免做基礎補強



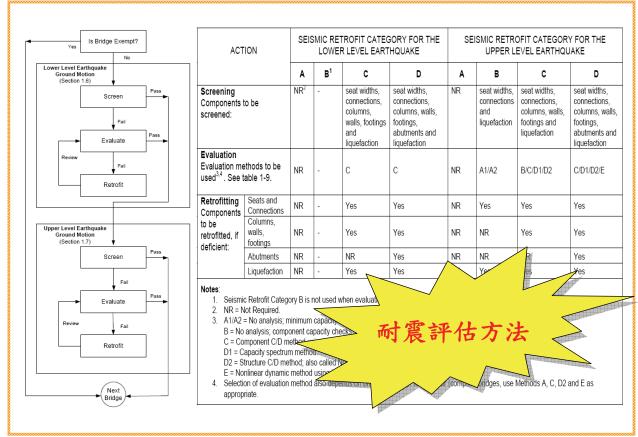

美國橋梁耐震補強準則

- ■Seismic Retrofitting
 Manual for Highway
 Structures Part I: Bridges.
 (FHWA, 2006.1)
- (1)性能式耐震補強設計法
- (2)整體內容完備流程完善
- (3)耐震評估方法選擇彈性
- (4)詳列補強工法方便查核
- (5)易於結合橋梁管理系統
- (6)提供補強成本評估模式



EARTHQUAKE GROUND MOTION	BRIDGE IMPORTANCE and SERVICE LIFE CATEGORY					
		Standard	1		Essen	tial
	ASL 1	ASL 2	ASL 3	ASL 1	ASL 2	ASL 3
Lower Level Ground Motion 50 percent probability of exceedance in 75 years; return period is about 100 years.	PL0 ⁴	PL3	PL3	PL0 ⁴	PL3	PL3
Upper Level Ground Motion 7 percent probability of exceedance in 75 years; return period is about 1,000 years.	PL0 ⁴	PL1	PL1	PL0 ⁴	PL1	PL2

- ASL 1: 0 15 years
- ASL 2: 16 50 years
- ASL 3: > 50 years
- 2. Performance Levels are:
 - PL0: No minimum level of performance is recommended.
 - PL1: Life safety. Significant damage is disrupted, but life safety is preserved. The large earthquake.
 - PL2: Operational. Damage sustained is vehicles should be available after inspectible reparable with or without restrictions on training.
 - PL3: Fully Operational. No damage is sustained full service is available for all vehicles immediately after the earthquake. No repairs are required.



			RETROFIT	APPROACH			
SEISMIC DEFICIENCY	Strengthening	Displacement Capacity Enhancement	Force Limitation	Response Modification	Site Remediation	Damage Acceptance or Control	Partial Replacement
Superstructure deficiencies	8.2.1.1 Strengthening of Deck to Girder Connection 8.2.1.4 Girder Strengthening 8.2.4 Strengthening of Continuous Superstructures						
Structurally deficient diaphragms	8.2.1.2 Diaphragm Strengthening or Stiffening		8.2.1.3 Energy Dissipating Ductile Diaphragms				
Structurally deficient bearings/ connections	8.3.1 Strengthening of Existing Bearings 8.3.3 Strengthening of Superstructure to Substructure Connections 8.4.2.2 Transverse Restrainers 8.4.2.3 Vertical Motion Restrainers			8.3.2.2 Replacement with Seismic Isolation Bearings 8.4.3 Energy Dissipation Devices 8.4.4 Shock Transmission Units			8.3.2.1 Conventional Bearings
Insufficient seat length	8.2.2.1 Web and Flange Plates 8.4.2.1 Longitudinal Joint Restrainers	8.4.1.1 Concrete Seat Extensions and Catcher Blocks 8.4.1.2 Pipe Extenders		8.2.2.2 Superstructure Joint Strengthening 8.2.3 Reduction of			1
Flexurally deficient columns or piers	9.2.1.2 Column Flexural Strengthening 9.2.1.4 Supplemental Column Shear Walls 9.2.2.1 Braced Frames 9.2.2.2 Built-up Compression Members 9.2.3 Concrete Wall Piers	9.2.1.3 Column Ductility Improvement and Shear Strengthening 9.2.2.2 Built-up Compression Members	9.2.1.6 Limito Column 9.2.2.1 Brace	耐震補	捕強工 注	t (92.1.1 Column eplacement
Shear deficient columns or piers	9.2.1.3 Column Ductility Improvement and Shear Strengthening 9.2.1.4 Supplemental Column Shear Walls						

Proposed

AASHTO Guide Specifications for LRFD Seismic Bridge Design

Subcommittee for Seismic Effects on Bridges T-3

Prepared by:
Roy A. Imbsen Imbsen Consulting

May 2007

美國聯邦公路總署
橋梁耐震設計草案

橋梁耐震設計草案

1000年回歸期加速度設計反應譜

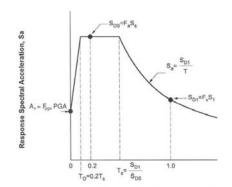
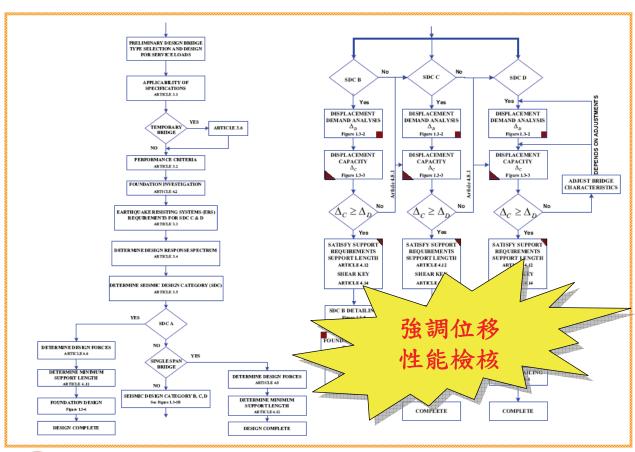


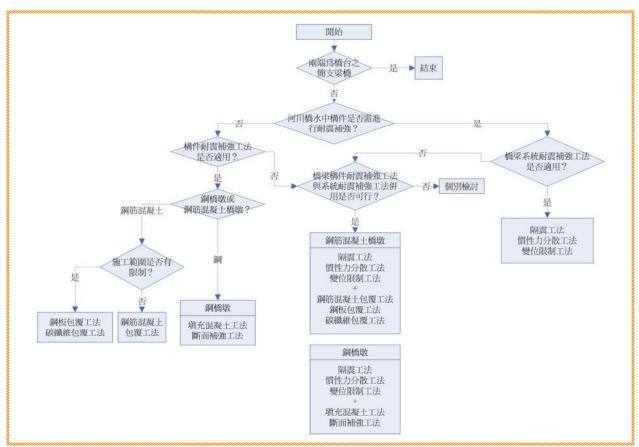
Table 3.5-1 Partitions for Seismic Design Categories A, B, C and D.


Period, T (seconds)

C and Di	
Value of $S_{DI} = F_{\nu} S_{I}$	SDC
$S_{DI} < 0.15$	A
$0.15 \le S_{DI} < 0.30$	В
$0.30 \le S_{DI} < 0.50$	C
$0.50 \le S_{DI}$	D

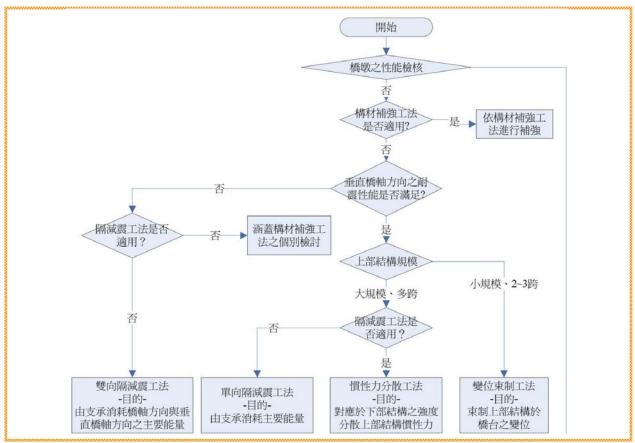
單一性能目標:避免橋梁倒塌

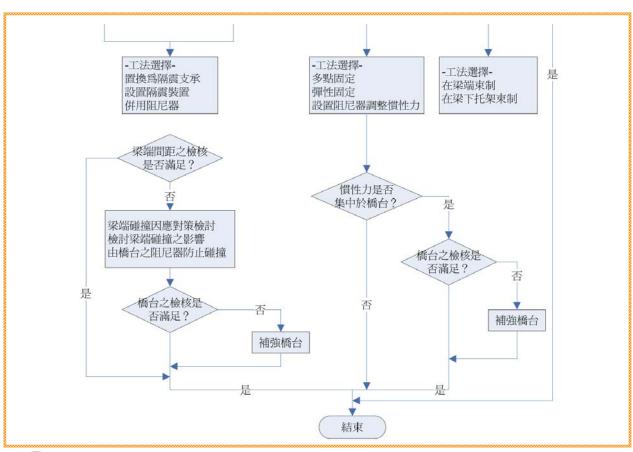
日本橋梁耐震補強手冊



既設橋梁之耐震補強工法 事例集(財團法人海洋架 橋橋梁委員會,2005年)

性能式耐震補強設計法 強調全橋系統補強概念 詳述防止落橋設施細節 檢討補強工法施工特性





National Center for Research on Earthquake Engineering

	銅筋混凝土包覆	鋼板包覆	碳纖維包覆
主筋切斷	可適用	可適用	可適用
點部位	• 配合橋柱整體	• 主筋切斷點部位	• 主筋切斷點部位
剪力補強	包覆施工性、景	可適用	可適用
韌性補強	觀性可使用之	可適用	可適用
	場合多	• 配合中間貫通鋼材增加	• 配合中間貫通鋼材增加圍東
	• 配合中間貫通	圍東力可適用壁式橋腳	力可適用壁式橋腳性補強場
	鋼材增加圍東	性補強場合	合
彎曲補強	力可適用壁式	可適用	不可適用
	橋腳性補強場	• 彎曲耐力補強過大時,	• 纖維材不能用於彎曲補強
	合	可能影響基礎構造之承	• 纖維材+鋼筋混凝土併用補強
	• 彎曲耐力補強	载力	有案例
	過大時,可能影	20.101	200.00000
	響基礎構造之		
	承载力		
構造的特	• 包覆厚度可能	• 適用於用地界限受限制	• 適用於用地界限受限制之場
徴	受限於用地界	之場合	合
	限	• 包覆自重輕對基礎影響	• 包覆自重輕對基礎影響小
	• 包覆之自重,可	小	• 可用於構造物複雜之形狀
	能影響基礎之	• 對於矩形斷面補強鋼	• 纖維材可適用於角偶斷面之
	承载能力	板,橋底部腳之角落要	改善等
		特別圍束處理	
施工性	• 既設混凝土表	• 狭隘場所施工受限制之	• 纖維材系樹脂接著,作業工其
	面必要處理	場合	短
			• 手工作業,不需施工重機
			• 輕量可搬性佳,適狹場所作業
			• 施工時必要注意氣溫、濕度
維護管理	 有利維護管理 	• 必需考慮鋼板防蝕對策	• 維持管理方便
性	dio		• 必需防止纖維材之受損
			• 含浸樹脂有防水效果:可防止
			混凝土劣化、鋼筋腐蝕
經濟性	• 比一般鋼板及		• 與鋼板卷立工法比較,其經濟
	纖維包覆經濟		性需視包覆層數而定

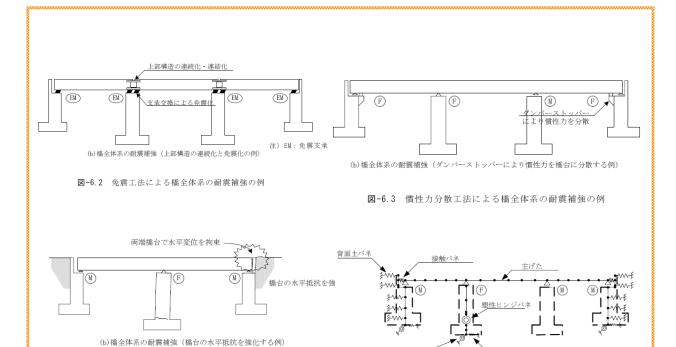


図-6.4 変位拘束工法による橋全体系の耐震補強の例

図-6.22 変位拘束工法における動的解析モデルの例

道路震災對策便覽 道路震災對策便覽

(震前對策編) 2006.9 (震災復舊編) 2006.9

道路橋梁補強事例集 2007.7

- •地震災害特徵
- •震災預防計畫
- •震害調查法
- •耐震對策工法與案例
- •緊急調查與措施
- 緊急復舊
- 修復工程
- 震災修復案例
- •道路橋之維持管理
- •構造物注意事項
- •道路橋補強修復事例

National Center for Research on Earthquake Engineering

交通部公路總局

公路橋梁耐震評估及補強準則之研究(97.6-98.10)

本案研究目的係以橋梁生命週期成本之概 念,周全完整之公路橋梁耐震檢測、評估 及補強準則,供日後國內公路橋梁需進行 耐震補強設計時之依據,藉以用最經濟有 效且可行之方式,全面提升橋梁之耐震能 力,延展橋梁服務年限,提高交通路網防 災能力,減少災害損失,達到橋梁永續建 設之目的。

公路橋梁耐震評估及補強準則章節規劃

- 第一章 總則
- 第二章 地震需求
- 第三章 耐震能力初步評估
- 第四章 耐震能力詳細評估
- 第五章 結構模擬與容量評估
- 第六章 地工構造模擬與容量評估方法
- 第七章 防落與結構系統補強設計
- 第八章 結構構件補強設計
- 第九章 基礎裸露橋梁之耐震評估與補強

National Center for Research on Earthquake Engineering

第一章 總則

- 1.1 基本原則
 - 1.1.1 適用範圍
 - 1.1.2 準則內容
- 1.2 耐震性能目標
 - 1.2.1 性能水準
 - 1.2.2 地震等級
 - 1.2.3 性能目標

- 1.3 耐震能力初步評估
- 1.4 耐震能力詳細評估
- 1.5 耐震補強原則與策略
 - 1.5.1 補強原則
 - 1.5.2 補強策略
 - 1.5.3 補強方案
 - 1.5.4 補強工法

1.1 基本原則

1.1.1 適用範圍

本準則適用於跨度150公尺以下之一般性公路橋梁。特殊性橋梁如吊橋、斜張橋、桁架橋、活動橋或臨時便橋等及跨度超過150公尺者,應依橋址地形、土層條件、橋梁現況、以往之震害經驗、橋梁之重要性及橋梁工址之實際情況等因素作適當之考量,本準則如有仍可適用的部分,亦可參考使用。

解說:

如橋梁具有下列情況之一者,則毋須進行耐震評估與補強:

- (1) 非位於斷層近域且依89年部頒耐震設計規範設計之橋梁。
- (2) 依97年及其後部頒耐震設計規範設計之橋梁。
- (3) 臨時便橋。
- (4) **已封閉且無跨越通行公路、鐵路或水路航道之橋梁**。 橋梁於下列情況下宜重新進行調查檢測與必要之耐震評估:
- (1) 天然災害造成橋梁環境之明顯改變時,如基礎嚴重沖刷、土石流等。
- (2) 橋梁因老劣化、增加交通量、超載等因素而明顯降低其結構耐震性能時。
- (3) 橋梁主管機關認為有需要進行者。

單跨橋評估與補強時,僅需依第五章與第七章之規定針對其防落長度與支 承強度進行檢核與補強。

National Center for Research on Earthquake Engineering

表1.1 耐震補強後橋梁之性能水準

.h4 4E			修復	修復性				
性能 水準	安全性	服務性	 短期(服務性) 	長期(安全性)				
PL3	結構保持彈性 防止落橋	與地震前交通 機能相同	簡易維修	經常修復				
PL2	防止落橋與允 許橋柱輕微受 損	短期搶修可恢 復震前交通機 能	依既有緊急搶修 工法,完成短期 搶修	依既有修復工 法,完成長期修 復				
PL1	防止落橋與橋 柱過大殘留變 形	短期搶修可限 重限速恢復通 行	更換受損構件或 進行結構補強	封閉橋梁,進行 局部重建				
PL0	防止落橋與橋 柱崩塌	禁止通行,以 替代道路或臨 時便橋取代	全橋拆除重建	全橋拆除重建				

表1.2 一般橋梁 (公路橋梁耐震設計規範 I=1.0) 之性能目標

山金少淮		採用之設計規範版本	-
地震水準	84及89年版	49及76年版	49年版以前
中度地震	PL3	PL3	PL3
設計地震	PL2	PL1	PL0

表1.3 重要橋梁(公路橋梁耐震設計規範 I=1.2)之性能目標

地震水準	採用之設計規範版本				
	84及89年版	49及76年版	49年版以前		
中度地震	PL3	PL3	PL3		
設計地震	PL2	PL1	PL1		

National Center for Research on Earthquake Engineering

表1.4 橋梁耐震能力詳細評估方法

地震等級	採用之設計規範版本					
	84/89年版	49/76年版	49年版以前			
中度地震	線性靜力法、非線性靜力法 線性動力法、非線性動力皆可					
設計地震	非線性靜力法、非線性動力皆可					

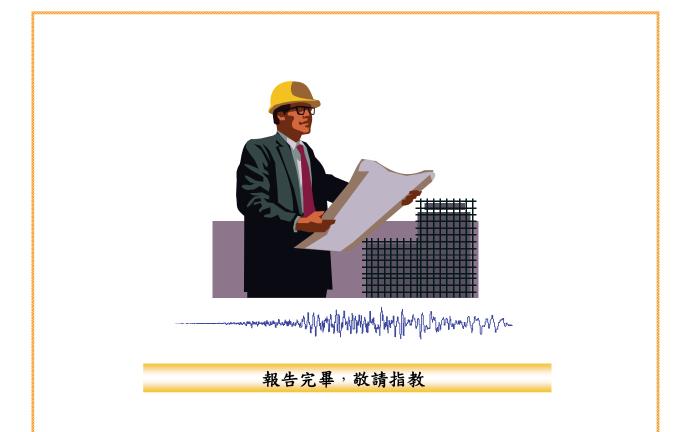


表 1.5 橋梁耐震補強方案與補強工法參考章節表

	衣 1.3 衛条啊晨補強力 茶與補強上法参考單即衣								
大					補強方案				
	防落系統		結構系統補強		結構構件補強				
楼 件	防落長度	變位限制	更換支承 (隔滅震 支承)	限制力量傳遞	力量分散	增加強度	提高韌性	局部重建	地盤改良
上部結構	7.1.1 防落 長度 7.1.4 補強 工法	7.1.2 止震 塊之 大.1.3 防 大.1.3 防 料 之 拉 程 與 及 大.1.4 補 強 大.1.4 補 強 工 法			7.2.3 力 量 分散 7.2.4 補 強 工法				
支承			7.2.1 更換 支承 7.2.4 補強 工法	7.2.2 限 制力 傳遞 7.2.補強 工法	7.2.3 力量 分散 7.2.4 補強 工法			7.2.1 更 換支承 7.2.4 補 強工法	
橋柱及 帽梁						8.1.1 增加 強度 8.1.3 補強 工法	韌性	8.1.2 提	
基礎						8.2.1 增加 強度 8.2.2 補強 工法		8.2.1 增 加強度 8.2.2 補 強工法	8.2.2 補強工 法
橋台						8.3.1 增加 強度 8.3.2 穩定 性補強 8.3.3 補強 工法			8.3.2 穩定性 補強 8.3.3 補強工 法

